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Extensional Vibrations of Elastic Plates 

by R. D. Mindlin and M. A. Medick^ 

\ 

A system of approximate, two-dimensional equations of extensional 

motion of isotropic, elastic plates is derived. The  equations take into ^ 

account the coupling between extensional, symmetric thickness-stretch and 

syracetric thickness-shear modes and also include two face-shear modes. 

Ihe spectrum of frequencies for real, imaginary and complex wave-numbers 

in an infinite plate is explored in detail and compared with the corre- 

sponding solution of the three-dimensional equations. 

■■\ 
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Introduction 

In a previous paper [l]k a derivation was given of approximate 

equations of motion that take into account the coupling between face and 

thickness modes of extensional vibration of elastic plates. The thick- 

ness motion considered was that of t -^ lowest thickness-stretch mode, in 

which the displacement is noraal to -.ie middle plane of the plate and 

the middle plane is the nodal plane. The frequency of this mode depends 

on Rjisson's ratio (V ): the frequency ^creasing with inc-easing lA 

When «^ > l/J  the frequency of the lowest thickness-stretoh mode is 

higher than the frequency, ..dependent of ^ , of the lowest, syranetric 

thickness-shear mode. In the latter the displacement is also unidirec- 

tional but it is parallel to the middle plane of the plate and there are 

two nodal planes symmetrically disposed with respect to the middle plane. 

In the range of Föisson's ratios cornnonly encountered, both thickness 

modes can couple with the face modes and with each other. This circum- 

stance has a marked influence on phase and group velocities of wtves and 

on the frequencies and shapes of hi^i-frequency vibrational modes. In 

the present paper a derivation is given of approximate equations of 

motion vhich include the effects of both thickness-modes. 

The approximate, two-dimensional equations are deduced from the 

three-dimensional equations of elasticity by . procedure based on the 

series expansion m. iLo<L? of Poisson [2] and Cauchy [33 and the integral 

method of Kirchhoff [k].    A detailed exposition of the procedure, using 

^ Numbers in brackets refer to the list of references at the end of the 

paper. 



a power series, and  its application to approximations of orders zero and 

one ere Given elsewhere [5]- In approxinations of the second and hiGher 

orders, awkward matheaatical foms are encountered due to the lack of 

orthogonality of the terras of a power series. At the suggestion of V. 

Präger, an expansion in a series of Legendre polynomials was studied. In 

that case, although similar awkward foiros appear ELS  a result of the more 

complica-ced formula for the derivative, they do not occur, for the most "* 

part, until the terms of the third order are reached. Hence, the expan- 

sion in a series of Legendre polynomials is a convenient one on which to 

base the present second order approximation, de method of derivation 

and the resulting equations (with the inertia terms omitted) are closely 

related to E. Reissner's theory [6] of three-dimensional corrections for 

the equations of generalized plane stress. 

The expansion in a series of Legendre polynomials of the thickness- 

coordinate, followed by an integration across the thickness, converts the 

three-dimensional equations of elaaticity into an infinite series of two- 

dimensional equations which then are truncated to produce the approximate 

equations. The  full series expressions of displacement, strain, stress, 

energies and equations of motion, in conjuction with an understanding of 

Rayleigh's [7] exact solution of the problem of vibrations of an infinite 

plate, are of aid in deciding what to include in various orders of ap- 

proximation and in understanding the implications of what is ditcarded 

and what retained. The series expressions and Raylei^i's exact solution 

also supply both the motivation and the necessary data for making adjust- 

ments, of terms that are left after the truncation, in addition to an 



adju^ent of the W oad. by bissen in e.^U^lnc the zero-order 

e^tions. ». adjuatn.ent a.alor.ous to ^isson's serve, to u^ooupXe the 

„odes stained ft« the hiBher ones vlthout seriously affeotinc the he- 

Uavior of the iower ones. ft. additional sdjus^ents a« »de to improve  I 

the „atch hetveen the fmaency snectm of an infinite plate as obtained   I 

from the approximate and e^ct equations, ftis is aoconpiished by the    ( 

Eduction of coeffieients a.aloEOUs to the shear ooefficient in the    . 

Ttaosheny-o hess. equations [8] and the analogs equations for plates [9J.  I 

!„ the latter paper [9] it vas sho-^n hov the shear coefficient nay be     I 

chosen to effect a perfect match in one or smother part of the spectr« 

depending upon the fluency ranße *rt mode of greatest interest in a     j 

particular application of «>e appxoKtoate equations. In the p^sent case  I 

four such coefficients are introduced and, due to the complexity of the 

s^ctnar., seve^d possible combinatio-s of matching points present them- 

selves. ft. choice is made he« to do all the matchtag at zero wave num- 

her. The mnge of vave numbers and frequencies over «hich the match 

^ias  good is a measure of both the usemness of the approxl^te equa- 

tions and their range of applicability. In this range, solutions of the  ■ 

approximate equations, in the case of finite plates, may be exacted to 

be reliable inasmuch as these solutions are composed essentially of com- 

binatlons of the modes and overtones of the infinite plate. I 

■.ton both the symmetric thickness-shear and thicta»«..tretch    ,. 

deformations are taken into account, important properties of the fre-   | 

quency spectrum contained in the exact theory a» reproduced in the re- 

sulting approximate equations of the second order, whereas they do not 
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ui •Sp«<n)ttr<«M*i.t), (i) 

P.^^l, ^{>|ls>|, P.C^-O^-O/Z,... 

and the u- '   it is to be noted, are functions of the coordinates X,, 

X3 and the time, t  , only. "Die  UjW>  are the amplitudes of polynomial 

distributions of displacements across the thickness of the plate. For 

appear in the previous approximation of the first order [1]. Diese prop- 

erties of the exact frequency spectrum include the imaeinaiy loop dis- 

covered by Aggarwal and Shaw [10]; the anomalous behavior of the second 

and third branches with variation of Itoisson's ratio [5]; the frequency 

minimum of the second branch [5] with its associated zero group-velocity 

at a non-zero wave-number and phase and group velocities of opposite sign 

at smaller wave-numbers, as described by Tolstoy and Usdin [11]; and, 

finally, a pair of complex branches which account for edge vibrations 

observed in experiments. 

Expansion in Infinite Series 

We refer the plate to rectangular coordinates X; (t * 1,2, 3) 

with /,  and x3     in the middle plane and the faces at «,«*!».  Die 

components of displacement Uj (j = l,2;3)   are expressed as 

where "h =xa/b  , the Pn IV  
are *^e LeGendre polynomials 

5 

r 
7> > ' ' * 



convenience, however, they will be referred to as displacements of order 

n  or, simply, as displacements. 

Stress-Biuations of f-btion. Ibe series expression for the difl- 

placement is substituted in the equation 

/Ai.i-r;)«"^-0- (2) 

which is obtained from the variational equation of motion (Reference [12], 

p. l67). In Equation (2) the integration is over the volume, V   , of the 

plate; the T^  are the components of stress; and the summation conven- 

tion for repeated indices is employed, as are the comma notation for dif- 

ferentiation with respect to the coordinates x-  and the dot notation 

for differentiation with respect to time. 

When the integration with respect to rj , from -I to + | , is per- 

fomed in Equation (2), the result is 

in-m> 

»here A is the axe*, of the plate and 

CO 

D^ =2('»-'")*l,  ^n -2/(2n*l). 'nun 



The    T i"'1  and f, are defined as the  n th-order components of 

stress and face-traction, respectively; while the constants Dmn      and 

Cn  arise from the operations 

dn 
"Lj^FU. Lw*d*i 

w> 

(*»»      ,  „. (*t-m) 
Ihe appearance of  F,    aoad T2.    , in Equation (3), follows from 

an integration, by parts, of the teras in Equation (2) that contain V^*t- 

Since Equation (3) must hold for all A and arbitrary ^Mj*0, 

the quantity In parentheses must vanish and we arrive at the stress- 

equations of motion of order n : 

n 
brij.l  'iz^^li *rj  =(<'b(:n"j  •       (6) 

In the analogous equations of motion obtained from an expansion in 

power series (Reference [5], page 5.04), an infinite series appears on 

the ri&it hand side and no series appears on the left hand side. However, 

the series in Equation (6) contributes more than one tern only for /\ 7 2. 

Strain. In the three-dimensional theory, the components of strain, 

i-.      , are expressed in terns of the components of displacement by 

Inserting the series expansion from Equation (1) and using the foraula 

for the derivative from Equation (5), we find 
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2*., =f I Uu.^\u..L^)Pn*i61.u.in,*6,M.w))b't0mnPf,.m]i        (8) 

where  <5,.  is the Kronecker symbol &,   with i = 2, 
*j lJ 

In order to define components of strain of order n , the suramand 

in Equation (8) must be expressed as the product of Pn and a function 

independent of x2 . Considering the double sura as a triangular array 

and interchanging the order of summation of columns and rows, we find 

*ii  = £, P" «ij 
(n) (9) 

<»») where the «..  , defined as the components of strain of order n , are 

given by 

2..-. u. j-'.u./"1* b-(2«.l)f ^«,J«;-«**,lu,—'). (10) 

In the analogous expression obtained by a power series expansion (Reference 

[5]> P«  3«08),  there is no sum over m   .    However, the additional terms in 

Equation (^C) do not appear until m « 3. 

<*\ 

Ij 
tr\) 

Stress-Strain Relations.    The relations between the     t^- and the 

may be obtained by inserting the three-dimensions]  expressions 

T.v   rc....^   =   C... £   P.«   « S" 'kl   "   Ciik« ^ « *»« (ID 

- 
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in the first of aquations (4). After perfominc the inteeration, we find 

U1) 

V = C"V«^ • (12) 

For later use, it is convenient to have Equation (12) expressed in 

the reduced indicia! notation, in which double indices ranßing from 1 to 

rj  are replaced by .ingle indices, ranginG from 1 to 6, as follows: 

f-r   tif     €=^    €=2^ 

l? ''VI  > x%      xi\  i C2 r ^«2 » ^82<SI. 

V1«.   Tk=
T..5     «3S«3J.    ^ = 2^' 

Ihen Bjuation (12) becomes 

i«» TP    ^c,..,^"0 ;   p,c( = l,2,...6,  c^rc^ (15) 

Energy Densities.    Using the strain-energy-density,   U     ,  given 

in the three-dimensional theory by 

2Ü • V S6« " CM S *q i (iM 

we define a plate-strain-energy-density 

U «iVd^ (15) 

and find, with the aid of Equations (1^), (9) and the second of (5), 
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25-.Mf,C.,-.,-. (16) 

We also note that 

t* = bü/ü^. 

(17) 

(18) 

Similarly, using the kinetic energy-density, K  , as given in the 

three-dimensional theory by 

2K = lOUjUj , (19) 

we define a kinetic energy-density of the plate by 

(20) 

Ebctensional Vibrations of Isotropie Plates 

When the plate is Isotropie, motions symmetric (extensional) and 

antisymmetric (flexural), with respect to the middle plane, may be con- 

sidered separately. In the case of the fonaer, only those components of 

displacement  Uj**  are retained for which  j*n   is odd. As a re- 

sult, only those components of stress t^j   and strain  ij. " 

appear for vhich  i ♦ j »n    is even. In the sincle index notation. 

(«)   . w) 
% ' •p » 

the terms which appear are  p + n   odd for p odd and 
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pvm        even for   p   even. 

Die stress-equations of motion (6) then are 

djt,        dx,        b r  btl 

2 *,      bx,      b       b       3     bt 

dx, " bx,       b   ^  b    "5    M* 

,»,. «> 

ox. +  ^3       b        b '   5     öt» 

tt« a* nf ir. A*- 2£i!^1 

Ut  
+   ÖX,        b IT b 7    bt» 

(21) 



1J 

The components of strain that remain,  in Qjuations  (10), are 

er« (u^* u,£«. ...)/b 

€4
W   =   ö^rt/öX,*3Ka,tu,*V--)/b 

€4
W   --   du^/bx. 0(u1

,^u;4,....)/b 

««   - ^A*. 
(22) 

' 

^  =   5(uI
(l) + u2

<'^.-)/b 

(« öa,iy2)x. * ^u.(,1Ax, 

6«    =   dUt
,V^,*7(u,w*uf

rtU")/b 

i»^ öu^Ax. 4 7Kw^u/w*.-Vb 
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rhe stress-strain relations  (15) reduce to 

r.'0'= 2[(A*-2/«)el'
rt + A(fl-

,.i3'")] 

^3',,  - 2[(A^2/<)65'•, ^AU.'^C)] 

:*/ 
2/"«» 

«•J 

V0 - ^cv* 

(25) 

= 2^ ^77 

where   A    and ><    gi^re Lame' s constants. 

-   —^ 



Ik 

Ihe strain-energy-density,   in the form /jiven In Dquation (17)* 

becomes 

(0) 

•f- 

^■r;,,*1"
, tt*** "tfe* 

and, finally, the kinetic enercy-density (20) is 

Truncation of Series 

We "beßin by setting 

ur'0> u> • A, ">z> 
in) 

(24) 

(25) 

(26) 

Ihis leaves only the components U,'", Uj'\  ^i , ^.'"f u'^<1, 

and Uj'"  , as illustrated in Fig. 1. The tenna  w.   and Uj*"' 

are the amplitudes of uniform distributions that represent the thickness 

. .. 



Qm 
3 Yfi,p^<i= 

X 

^ 
ii     i     ii w3     »C» ""i"*' iT 

2M 

I w 
-3 
CM 
O 

IO 

"•—■+■—H 

K^^^ *Z 

JO      JQ 
h—H- H 
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distributions of displacements which occur in low frequency extensional 

and shear motions in the plane of the plate; Ut
w  is the amplitude of 

a linear distribution of displacement which is an approximation to the 

exact sinusoidal distribution in the lowest, symmetric, thicioiess-stretch 

mode;  U,*" and  w,"'  are the amplitudes of quadratic distributions 

of displacements which are approximations to the sinusoidal distributions 

in the lowest, symmetric, thickness-shear mode and the face-shear mode of 

the same order. 

The  last "displacement" retained ( ü,"' ) is the  amplitude of a 

cubic distribution which is an approximation to the sinusoidal distribu- 

tion of displacement in the second, symmetric, thicicness-stretch mode. 

This is a mode of higher order than is to be included in the approximate 

equations of the second order which we seek. However,  u^'  produces 

the second order strain €,"  (see the eiehth of Equations {22))  which, 

in turn, appears in the second order stress-strain relations (see the 

seventh, eighth and ninth of Equations (23)). In order to permit the 

alternating expansion and contraction, through the thickness, which 

should accompany the stresses tl
<,,   and T*      (by coupling through 

FoiBSon's  ratio) and at the same tirae avoid coupling with the undesired 

higher mode, the thickness stress  T,'*'  and the velocity  w,^  are 

set equal to zero. The  eichth of Equations (23) is then used to express 

^ fI*   in terms of i,1        and  (3   : 

C'-MC'O/^2/^ (27) 
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and this result is substituted in the expressions for  f 

to obtain 

it) and   f UJ 

T«. 2E'«l'
tt* ^^"O/ir, 

C - *£'(* "'- ^OA. 
(23) 

vhere      ^ r  A/^f^V1^ is Baisson's ratio and 

£'.  ^(Ay^^CA^^l-E/^-*»«), (29) 

in which £  is Young's modulus. In addition, the contributions of the 

stresses T^        and t^'*     to the strain energy (see Equation (24)) 

are neglected in order to destroy coupling with the unwanted higher mode 

when the displacements vary with X(  and x. . 

At this stage, the stress-equations of motion end with the fifth 

of Equations (^l); the öLruin-displacement relations end with ( U) m 

Equations (22); the stress-strain relations end with  T W      in Equations 

(2^»), with the expressions for  r('
1,
J f2

U) and  f^1'  replaced by Equa- 

tions (2?) and (20); the strain-energy-density ends with the third line in 

Equation {2k);  and the kinetic energy-density ends with the fifth term in 

Equation (25). 

Up to this point, the process of truncating the series expressions 

and adjusting the remaining terms is similar to the one employed by 

Poisson [2] to obtain the zero-order equations of extenslonal motions 

of Isotropie plates (Reference [12], p. 1*97)J the main difference being 

that here the process is carried on at a level two orders higher.  In 

. • _   - - • 
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Poisson's equations only the zero-order displacements,  u,"  and u," 

survive. Ihese are the amplitudes of uniform distributions, across the 

thickness of the plate, which are good approximations to the nearly uni- 

form distributions found in the lowest extensional mode of the exact 

theory (at long wave-lengths) and are exact for the lowest face-shear 

mode at all wave-lengths. The  additional terms  u,'", u,"'   and u,"*, 

which are now included, are the amplitudes of first and second degree 

polynomials and these are not good approximations to the distributions 

in the thickness-stretch and thickness-shear modes of the exact theory. 

For example, at infinite wave-length along the plate, the exact distribu- 

tions are sinusoidal across the thickness. It is advisable, therefore, 

to introduce additional adjustments to compensate, as well as possible, 

for the omission of the polynomials of higher degrees. 

Hie incorrect distributions of displacements affect the frequencies 

mainly through the thickness-strains and velocities. Accordingly, we make 

the substitutions 

*.«r for «r.       *>v ^ •v"« \ 

*t€»    for     «;", K^r  for    U.'" , 

lit?    ior    <\ ^^^ 1or    "*' 

in the strain-energy and kinetic energy densities, so that the coeffi- 

cients K, (r* 1,2.3, 4)    will be available for appropriate adjust- 

ments of the equations. 

Finally, as a matter of expediency, we omit the tenn  Ug**' from 

.„ - 
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the strain  C **  . This term  complicates th"  equations and nay be shown 

to have little influence on the long wave-length end of the spectrum. 

Second Order Approximation 

As a result of the truncations and adjustments described in the 

preceding section, the variables and equations of the second order approxi- 

mation are 

Kinetic Energy-Density: 

/ -7 j" \ 

St rain-Energy-Density: 

TT") 

♦ E'^V^CC'-^OOA v- ^/V/Vi- (3i) 
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Stress-Strain Relations  (    TV" « dU "/d«,"" 

1,'-= 2f(A*Z/<U,",-A(C.it(t1"
1)] 

(52) 

(The components of stress are illustrated in Fig. 2). 

Strain-Displacement Relations ; 

*;•»- öU-/^. ^u.'-'Ax, 

(The components of strain are illustrated in Fig. 5). 

. —^_— 



Pig,  2    -    Components of stress 
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Stress-Equations of Jtetion; 

it, (•i 

ax- 

<•> 

(I)       r '•>      ■- <" 

2P at' 
<•) 

+ j£i-'.Ji 
(.) 

«^ 
i2u3 

it 

10) 

bx 

CD 

IT* F 

b   '   to 3       at1 

dl 

iL!.\^. , ^,)
+I'W ,».. <« 

fcx. ax. 
(li (11 

b  t   b 

5"      at' 

A" At1 

(34) 

Displacement-Equations of fjptlon (obtained by substituting (33) in (32) 

and the result in (3^)): 

».. <•) 

/^Kj  V   U,    -      -f  
b b 

b Zb      '        it1 

.1.^0 

i'^V-M..^ 

2 

b   I ax. fo   j       ib       ' bi 

\ öx^       b   /      ato      r       ötl b 

i., (»> 

(35) 

. 

,    » 
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where 

(•i UJ 

"ax, 

M 

The Coefficients >6; 

Ttie coefficients K.";  are detennined from a comparison of prop- 

erties of the solutions of EquAtoous {}?),  for the case of straight- 

crested waves in an infinite plate, with the corresponding properties 

of the analogous solution of the three-dimensional equations. Taking 

the wave-nomal in the direction of x, , we find that Equations (35) 

separate into a group of three coupled equations on u,'^ U,1'1   and 

u <*>   and two independent equations: one on u,  and one on ^y   ■ 

The coupled equations govern three "compressional modes" and the re- 

maining two equations govern 'face-shear" modes. To consider, first, 

the group of three, we set  F, * =0    and 

u.'" - A »in ^A. c1^ , u,^ Ö, 

u,01 -B cos**. elu,t , (36) 

in Equations (35) and obtain the secalar equation 

0 

«a 

0n 

*ij 

'u 

«. Ö (37) 



• 

Zd 

where 

and 

a.-kV-ir 

z^z^b/ir,    n«co/u>s   ,    vt* tri/t/f^/Zb, 

\C-*{K*l/\l/* =Z(/-v)/(l-2^ 

We also obtain the three sets of amplitude ratios 

(38) 

A, : B; : C,   =  I : ajz-  : fl./bi ,   i- /,2, (59) 

where 

a^ - 7r(n*-htzl
,)/2K.(K,-^) 

1     ZtrV If»/ /        i-^^k* 

and the    z-      are the roots of Equation (57). 



It may be seen that z , which is proportional to the wave-number 

£ ,  is the ratio of the thickness of the plate to the real half-wave- 

length along Ihe plate; K     is the ratio of the velocity of dilatational 

waves to the velocity of equivolumlnal waves in an infinite medium; and 

n  is the ratio of the frequency to the frequency of the lowest anti- 

symmetric thickness-shear mode. 

Ihe relation between Si     and z  , in Biuation {Yi),  should match, 

as closely as possible, the corresponding relation obtained from the three- 

dimensional equations. Bae match is improved, within the framework of the 

present approximation, by choosing appropriate values for the coefficients 

it;  ; but. since the K»i  are constants, a perfect match can be made only 

at one value of 2  for each of them. Now, large enough z  corresponds 

to frequencies higb enough to enter the range of modes that have not been 

included in the approximate equation». In a plate vibrating at such high 

frequencies under practical (i.e., not mixed) edge conditions, the high 

modes would, in general, couple with the ones of lower order. Thus the 

applicability of the approximate equations to bounded plates is limited 

to frequencies below the lowest frequency of the lowest neglected mode. 

There is, then, little advantage to be gained in matching the approxiiiate 

and exact solutions at short wave-lengths (large z ) at the expense of 

a good match at long wave-lengths. In fact, we go to the extreme and do 

all of the matching in the neighborhood of  z « Ö   primarily because 

of the intricate behavior of the exact solution at long wave-lengths and 

also because this choice results in a reasonably good match out to as 

short wave-lengths as the frequency limitation permits. 
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iJhen     2 • Ö      ,  Biuation O?) has the three roots 

nz'0J   »Z^V/TTV , ecK^/ir1^' (40) 

corresponding to the amplitude ratios 

A : B t C = I : Ö .- 0 , 0:1:0,    0:0 t) 

respectively. It may be seen that, at infinite wave-length, the three 

"compressional modes" uncouple to form an extensional, a thickness-stretch 

and a thickness-shear mode.  Ihe three limiting frequencies are to be 

compared with the exact values 

n2= ^, M*,4- (H) 

of the cut-off frequencies of the extensional, first thickness stretch 

and first symmetric thickness shear modes in Rayleigh's exact solution 

[?]•    Hence, we set 

*./Kj = tr/Vil   ,     K»f/R4 = ir/^s (42) 

and these relations between pairs of «.■  are used in what follows. 

We proceed to examine the roots of Equation (37) in the neighbor- 

ucod of the roots given in Equations (40) or (41) (which are now the 

same). 

First, for z « I , -Q « I   , we find 

a1« 4z2(k,-l)/k1# 00) 

i 



& 

i.e., phase velocity   [ E/pO-V)] •    Oiis is exactly tiie result obtained 

fix» the three-dimensional theory for the lowest mode at long wave-lengths. 

Next,  for     z* I ,   n-k -€ ,    ^ —^        ,  Equation (57) gives 

äz      kl-4. \ \z^ k' / 

and in the limit, as      k-* 2       and    z-* 0, 

^z      ^tc.yr 

Finally,  for    z <c i,   H = 2 ^ ^ ;    f -♦ ^        ^ we find 

^z        6 

ir?2     / 4(kx-i)(kt-4)       Jt^\ (46a) 

and in the limit,  as K-^Z  and 2-^^, 

Equations (41») to (47a) are to be compared with the exact values 

(Reference [5], p. 2.45) given in the following correspondingly numbered 

equations: 

dz 
__ *kz/jr       4   cot?LiL>i (^b) 



26 

-   ± 
w (^5b) 

dz  -  ^(l"Kt0V) 
(^6b) 

du     - X 
dz ~ * rr 

(if 7b) 

Equating (hka.) to (Wb) and (46a) to (46b), we find 

*!* _   »8 (k2-4) [„/..> 
tr'k    L 2 J 

ic.1    ♦tt.MlC-0(^-4) U»       trM2    k      ki 

(48) 

We also note, from Equations {hS),  that 

I inn 
li.' 

linn —, 

192 
IT* 

_ 384-Q(Tr,-6) 

IT6 

(^9) 

Equations (42) and (48) give the values of the four coefficients 

K-J.  in tenns of Poisson's ratio. As a result of these relations, all 

of the ordinates, slopes and curvatures of the curves Ci  vs. z. , 
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characterizing the frequency spectruffl of the cowpresöionftl modes of the 

approximate theory,  are identical with those of the exact solution at 

Zi (J .     Equations  (48) and,  in fact,  all of the equations of this 

second-order approxiraation should be used only for itoisson's ratios less 

than about 7/l6.    Above that value the frequency of the thickness-stretch 

mode is so high in the spectrurc that,  in the exact theory,  coupling with 

the second symmetric thickness-shear mode becomes important and that mode 

is not included, in the present approximation. 

Turning, now,  to the two face-shear modes, we set   F     = 0, 

M'-=A(ccs^.etwt, (50) 

wt u^A.coslx.C14"', 

in Equations (35), and find that Uj'*'  and u}
(a>  are not. coupled and 

have frequencies given by 

nl - L\ ♦«-x1/*; (51) 

respectively. Ihese are to be compared with the frequencies 

n = z\ 4^a (52) 

of the face-shear modes of orders zero and two obtained Irom the exact 

equations.    It may be seen that the zero-order face-shear mode Is re- 

produced exactly,  in the approximate equations,  for all wave-lengths. 
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The  second order face-shear mode has the correct Ordinate (fl  ) and 

slope (c/fl/dz   ) at z^ 0    but it does not have the correct curvature 

because of the presence of the coefficient «4  . By choosing t<.4 = /, 

this discrepancy could be eliminated, but only at the expense of incor- 

rect behavior of one of the coupled modes. 

Frequency Spectrum 

The spectrjm of frequencies of the five possible modes of vibra- 

tion of an infinite plate, which the approximate theory contains, is 

given by the five independent roots of Equations (37) and (51). We con- 

sider, first, the three corapressional modes. 

Equations (57) relate /)*  and x*  but only real, positive 

values of A have physical significance. For real, positive fl   , the 

roots ra  may be three real positive or two real positive and one real 

negative or one real positive and two conjugate complex. Hence the roots 

z « x > t' (53) 

may be three real or two real and one imaginary or one real and two con- 

Jugate complex. In addition, the character of the spectrum is different 

according as Poisson's ratio is less than, equal to or greater than l/jj. 

'Je consider the case    i>'<l/3        (i.e.,K<2     ) first.    Ihen, 

when    A> 2 ,    the three roots of Equation (57) are real  (  t| = Ö     ). 

They are illustrated in Fig.  ^a (for   lA i/4-       ,  i.e.,   kl - 3   ) by the 

three curves  (full lines) marked    f, , <f>t , <pj       in the plane    cj= 0 

and the region   D. > 2 .        As   il    drops below    Jl ■ 2.        , the largest 

- -— —- m    .., ,   : ..... 
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root.,    ^,    ,  approaches zeix> vita aayaptotlc bohavror civen by Bqaatiun 

Co);  txie intermediate loot,   ^    ,  approaches a rninimum, D.     , below 

which  there are no real  roots other than   ^|   ; the smallest root,   ^)3 _, 

approaches a minimum in the  real plane    y* 0        at    SI *■ Z j   * * 0 

same in view of Equations  (-IO).    Continuing with the root   <^3   , o.s fi 

drops below   fl-Z     ,  the root is imaginary { A- 0     ), a^ain with as- 

yraptotic behavior given by Equation  (46a) or (Lob) in the neighborhood 

of   /) = 2. As   ri     approaches   K     ,  from above,  the root    (^j     forms 

a loop in the imaginary plane  {   K - 0      ) and approaches    il = K j    oj = # 

with as^Tnptotic behavior given by Equation (44a) or (44b).    As 17    con- 

tinues to drop below   .0 = k     ,  the  root   (p^    becomes  real,  with bcaavior 

in the neighborhood of    fi *k 1  M * 0        agaiu given by (44a) but now x 

is negative.     Upon further diminution of A    ,  the root   ^>3    approaches 

a minimum at    fX-fi*      and negative   X.     Ihis portion of    0,    (i.e, 

betv;een    H =K    "   and    il= f}*   ) is identified in Fig.  4a by [  4>3    J, 

where the brackets indicate that it is the reflection in the plane X * 0 

that is shown.    Finally,  when    fl < fl    ,     the roots   <j>l   and    (^    are con- 

Jugate complex (    z = ±x -»-cii     ).     One of them is shown,  in Fig.  4a,  as the 

curve marked   ^2   ; this curve is also  [   <P3    ],  i.e.,  the reflection of the 

conjugate root   ^t,     in the plane x - 0. 

As Paisson's ratio approaches l/5 from below,  the frequency of the 

thicluiess-stretch mode increases,  approaching the frequency of the thick- 

ness shear mode;  i.e., at   z • ^        the intercept    /I r k approaches 

n = 2 .     Conjointly, the curvature of   <^    ^   H » k j   z*- 0 

with as^Tnptotic behavior given by Equation  (46a) or  (46b) which are the 
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approaches negative infinity in the  plane i^ = ^  and positive infinity 

in the plane X- 0      while both slopes remain zero: all in accordance 

with BcLuation (kk&)  or (^b). At the same time, the curvature of   f 3 

at Il~2 j   2 = 0 approaches positive infinity in the plane 1 = 0 

and negative infinity in the plane X» ^ while the slopes remain zero: 

all in accordance with Equation (k-6a) or (kSb). Meanwhile, the imaginary 

loop shrinks toward the point -fl* 2 j CJ = 0. 

At xf-\lzi   the thickness-stretch and thickness-shear modes have 

the same frequency and the slopes of the two branches of <^ become 2/« 

in accordance with Equations (^5a) and (V/a). ihis situation is illus- 

trated in Fig. Ub. Here, again, the portions marked [ ^, j are the re- 

flections, in the plane t-O       of the actual branches. 

When V > 1/3 the thickness-stretch mode has a frequency higher 

than that of the thickness-shear mode. The spectrum (illustrated in 

Fig. 4c for V - 2/5"  ) has now undergone an important change in that 

the imaginary branch loops up, from £1 - tJ     instead of down. 

Since only powers of z1  occur in Equation (35)* there is 

another set of physically significant roots given by the reflections of 

the curves of Fig. 4 in the planes X = 0  and tf = 0, 

Turning, now, to the face-shear modes, the first root in Equation 

(51) yields the strai^it line marked H0  in Fig. 4. The second face- 

shear mode gives the roots marked Ht in the figures; these roots are 

real for Cl>Z       and imaginary for /I < 2 .    As before, there is 

an additional set of roots given by the reflections of the curves Hd 

and Hj in the planes %-0        and tj » 0. 



The spectra of the corresponding five modes, as computed from 

Rayleigh's solution of the exact equations, are also shown in Figs. k&, 

b and c (as dashed lines). The importance of the introduction of the 

coefficients Ki    and their definitions, in tenns of Rässon's ratio, is 

apparent. Without these coefficients, the extraordinarily complicated 

behavior of the branches of the exact frequency spectrum at long wave- 

lengths would not be reproduced in the approximate equations.  In the 

whole range of frequencies and wave numbers depicted, the approximate 

spectrum is reasonably close to the exact one; the poorest representation 

occuring in portions of the complex branches and the spectrum of the sec- 

ond face-shear node. On the whole, fair results may be expected from 

solutions of the approximate equations in the case of finite plates. 

Bie shapes of modes in the various ränget of frequency can be 

anticipated from the real, imaginary or complex character of the roots. 

In rectangular coordinates, for example, real roots correspond to trigo- 

nometric mode-shapes; Imaginary roots to exponential or hyperbolic mode- 

shapes; and complex roots correspond to nodes whose shapes are given by 

products of trigonometric and exponential or hyperbolic functions. A 

striking example of the latter is to be found in the experiments with 

circular disks by Shaw [13]- 

The phase velocities (\f )  and group velocities ( *• ) can be 

visualized readily from Figs, k  inasmuch as 

5 The complex roots were kindly supplied by Dr. Morio Onoe, 
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*'  dj dx   Up 

&) 

For  exe^.iple, the phenomenon of phase and group velocities of opposite 

sign, noticed by Tolstoy and Usdin [llj in Rayleigh's solution, is repre- 

sented by the branch [ $3 ]    in the real plane. Also, the minimuii et 

fX* represents zero croup  velocity and non-zero phase velocity. As the 

wave-length approaches zero ( * •* oo ) the frequencies rise beyond the 

range of applicability of the equations and the asymptotic behavior of 

the velocities of the three conpressional nodes are 

^•tfi'iPF'tß .,,«) (5^) 

- 

According to the exact theory, the first of these should be the velocity 

of Rayleigh surface waves and the second and third should be the velocity 

of equivoluminal waves. 

Additional Results 

a. The equations of compatibility may be obtained by eliminating 

the displacements from Equations {j^),  with the result: 

- 
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^€,m     tiJl -   **" t 
dX3

l iX,1 bX.^Xj 

ix.z bfc b   dK 

b1 ÖXi1 b    iA3 

-    ^   _Lii-   =  LJüu (55) 
ix3

z ix* »«.^x, 

J. ii^ - J_ s_ /_ 1^'. lit!' ♦■ liitü \ 
b   iA,      2  äx.i      fex, b ix3   J 

UM*      2b \       b ^A, ix,   ) 

b   ox,      2 ^Xjl    ax3       ix. to   / 

rrhe first of (55) is the usual compatibility equation of cenei-alized plane 

stress and the remalninc six equations correspond to the ordinary six 

compatibility equations; the main differences beinc that here the compo- 

nents     6 '*'     have a factor 3 and the operator     lß*t      is replaced by l/b, 

b.    It may also be shown that there are nine dislocations when the 

strains and their derivatives are contir .ous.    Ihree of them are the two 

translational and one rotational dislocations of generalized plane stress. 

Of the remaining; six,  three are translational  (in the displacements 

u/",   u^", u»"1) and three are rotational,  in the component of rotation 

x/äü,»'. »ai:\, l(»üiMi^\,i(-S!^-3^V        (56) 
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c. A theorem of uniqueness of solutions of the approximate 

equations of motion may be established along the lines of Neumann's 

theore:.! ([11], p. 176 and [3]). This leads to the following conditions 

sufficient for a unique solution (in the absence of discontinuities and 

sin0-ularities}: 

i. Initial values of W*', w»,w , iV", u.'1' and u,'" 

throughout the plate. 

ii. Initial values of  U,  s Wj , ^t , u.  and U, 

tliroughout the plate. 

iii. One member of each of the five products ^'** u,"', ?$    **  * 

ffu",   F.l,,",U>; F3
<,'uJ

,l, at each point of the plate, i.Q., five surface 

conditions. 

iv. At each point on the edge of the plate (normal n  tan- 

gent a ) one member of each of the five products \m   u„ , ln, W, , I,,, "i , 

r««,,>un(i,> **?***t1'*'*  five edße conditions- 
Ihc requirement that the strain-energy-density U    t   Equation (31), 

be positive definite is satisfied by the addition of the requirements 

K,>0.   »cl> 0      to the usual requirements 3Ä *-2/* > 0 t ^ > 0 . 

d. In the case of steady vibrations, the displacements may be 

expressed conveniently in terns of potentials that satisfy Poisson equa- 

tions. Qnitting a factor  tiwt  the results are 

' 

. 
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dA, iX, «X, 6A3 

3 bXj      ax,      öxa      ix, 

6X3 6^, ö/fg bx, 

^7^,, ♦ ^^^0 = 0 

/*-?% ♦ «p^^/Ib^JM, « 0 (58) 

vrtiere 

M4ib/[i(n..4)-^] 
(59) 

and the J." are, again, the roots of Equation (37). It may be seen 

that M0 and H^ are the potentials of the two face-shear modes and 

the   $:    are the potentials of the three compressional modes. 

e.    Ihe tensor, and hence invariant,  characters of the quantities 

that appear in the second order equations are,  for the most part, apparent, 

— 
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For example, in tne displacenent equations of notion (j'j),  if the first 

and second equations are reearded as the rectangular components of a 

vector and the fourth and fifth equations the rectangular components of 

another vector, the only differential operators that appear are the 

gradient, divergence, Laplacian and **/***  : a11 invariants.  2ie 

dependent variables are the scalar  u**'1  and the two vectors 

(60) 

while the gradient operator is 

where  k. . k,   and  k, . k „  are unit vectors in the rectangular 

directions 1, 5 and the orthogonal curvilinear directions ^i v 

respectively': all in the plane of the plate. 

The appropriate strain tensors and their expression in terms of 

vector displacements are not quit« as apparent.  „re define another vector 

displacement 

U' = u'1' * K,^"* (62) 
«V ^V *w £    *. 

and a gradient operator » 

7'= 7 + K./b (63) 



37 

where k  is a unit vector normal to the plane of the plate. Ihen the 

twe tensers 

(64) 

constitute the strain. The seven equations of compatibility, for example, 

bccjme 

-. 

(65) 

-V      'V 

flftl  « 
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